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Abstract

We derive an approximate formula, based on the com-
plex error function, for the power lost by a gaussian
bunch in periodic orbit traversing a resonator. We
state the conditions that the bunch length σz, qual-
ity factor Q and resonant frequency ωr must satisfy
in order that this formula be valid.

1 Introduction

Consider a charged particle bunch moving in a peri-
odic orbit of length 2πR with frequency f0. If this
bunch traverses a resonant structure with impedance

Z(ω) =
RS

1 + iQ

(
ωr
ω
− ω

ωr

) (1)

then the power loss is [1]

P = (cf0)
2
∞∑

m=−∞
|ρ̃(mω0)|2 ReZ(mω0) (2)

where ρ̃(ω) is the frequency spectrum of the longitu-
dinal charge density ρ(z),

ρ̃(ω) =
1

c

πR∫

−πR

dz eiωz/cρ(z) (3)

If ρ(z) varies smoothly and is nonzero over a dis-
tance comparable to 2πR, then ρ̃(ω) is significantly
different from zero over a small region of ω (measured
in units of ω0 ≡ 2πf0), and then a few terms in the
summation in Eq. (2) yield an accurate estimate for
the power loss.

If, on the other hand, ρ̃(ω) is very broad-banded,
it is necessary to keep a large number of terms in
the summation in order to achieve good accuracy,
and therefore a better method is desirable. This case
arises when ρ(z) is nonzero over a very small region
of z, that is, when the bunch is much shorter than
the length of the orbit. This is clearly the case for

large circular accelerators such as the SSC, where the
circumference is millions of times greater than the
bunch length, and therefore an accurate evaluation
of the power loss may require millions of terms in
Eq. (2). This is the limiting case we address here.

2 Derivation

We assume, therefore, that ρ̃(ω) varies little over a
frequency interval of size ω0. In order to find a use-
ful approximation for Eq. (2) we assume also that
ReZ(ω) varies smoothly over such an interval. In
this case it is legitimate to replace the summation by
an integral in Eq. (2),

P = (cf0)
2

∞∫

−∞

dω

ω0
|ρ̃(ω)|2 ReZ(ω) (4)

which is easier to evaluate accurately.
The condition of smooth variation of ReZ(ω) is

easy to state more precisely. Eq. (1) implies

ReZ(ω) =
RS

1 +Q2

(
ωr
ω
− ω

ωr

)2 (5)

so the fastest variation occurs around the resonant
peaks at ω = ±ωr. The FWHM of these peaks is
∆ω = ωr/Q and therefore the smooth-variation con-
dition of ReZ(ω) translates into the requirement

ωr
Q
À ω0 (6)

We now consider a bunch of total charge Ne with
gaussian longitudinal charge density,

ρ(z) =
Ne√
2πσz

exp

(
− z2

2σ2
z

)
(7)

whose frequency spectrum is1

ρ̃(ω) =
Ne

c
exp

(
− 1

2ω
2σt

2
)

(8)

1We take the liberty to extend to infinity the limits of inte-
gration in Eq. (3) in anticipation of our approximation.
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where σt ≡ σz/c. The smooth-variation condi-
tion described above translates into the requirement
(ω0σt)

2 ¿ 1 or (σz
R

)2

¿ 1 (9)

which is usually well satisfied in high-energy storage
rings. From here on we assume the validity of in-
equalities (6) and (9).

An obvious change of variable in Eq. (4) yields

P = RSI
2
b

(
R

σz

)
K(α,Q) (10)

where Ib ≡ Nef0 is the bunch current, α = ωrσt and
K(α,Q) is a function defined by the integral

K(α,Q) ≡
∞∫

−∞

ds
e−s

2

1 +Q2
( s
α
− α

s

)2 (11)

We consider now the following representation of the
complex error function [2]

w(z) =
iz

π

∞∫

−∞

ds
e−s

2

z2 − s2
(12)

valid for Im z > 0, and calculate

Re(zw(z)) =
1

π

∞∫

−∞

ds e−s
2

Re

(
iz2

z2 − s2

)
(13)

By setting z = x+ iy we obtain

Re

(
iz2

z2 − s2

)
=

2xys2

(x2 + y2)2 + s4 − 2(x2 − y2)s2
(14)

while the integrand in Eq. (11) is proportional to

s2

α4 + s4 − 2(1− 1/2Q2)α2s2
(15)

Therefore we are led to identify

x2 + y2 = α2 (16a)

x2 − y2 = α2(1− 1/2Q2) (16b)

from which we obtain

x =
α

2Q

√
4Q2 − 1 (17a)

y =
α

2Q
(17b)

(the other solutions are not appropriate). Therefore

K(α,Q) =
2πRe(zw(z))√

4Q2 − 1
(18)

and, finally,

P = RSI
2
b

(
2πR

σz

)
Re(zw(z))√

4Q2 − 1
(19)

where
z =

α

2Q

(√
4Q2 − 1 + i

)
(20)

Eqs. (19–20) constitute our final result, which is
valid provided the inequalities (6) and (9) are sat-
isfied. The virtue of (19) lies in the fact that the
complex error function can be easily estimated nu-
merically by efficient routines available commercially.

3 Remarks

1. For Q = 1 Eq. (19) yields the known result [3].

2. Despite its appearance, Eq. (19) is not divergent
at Q = 1/2 because there z is purely imaginary
and w(z) is purely real, hence Re(zw(z)) = 0.
For Q < 1/2 Eq. (19) is clearly not valid, al-
though a generalization is probably easy to find.

3. For Q À 1 but not so large that (6) is violated,
z becomes efectively real hence [2] Re(zw(z)) '
x exp(−x2) and (19) simplifies to

P ' RSI2
b

(
πωr
ω0Q

)
e−(ωrσt)

2

(21)
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